Accelerations for a variety of global optimization methods
نویسندگان
چکیده
منابع مشابه
Accelerations for a variety of global optimization methods
Optimization methods for a given class are easily modified to utilize additional information and work faster on a more·restricted class. In particular algorithms that use only the Lipschitz constant (e.g. Mladineo, Piyavskii, Shubert and Wood) can be modified to use second derivative bounds or gradient calculations. The algorithm of Breiman & Cutler can be modified to use Lipschitz bounds. Test...
متن کاملHomotopy Optimization Methods for Global Optimization
We define a new method for global optimization, the Homotopy Optimization Method (HOM). This method differs from previous homotopy and continuation methods in that its aim is to find a minimizer for each of a set of values of the homotopy parameter, rather than to follow a path of minimizers. We define a second method, called HOPE, by allowing HOM to follow an ensemble of points obtained by per...
متن کاملMinorant methods for stochastic global optimization
Branch and bound method and Pijavskii's method are extended for solution of global stochastic optimization problems. These extensions employ a concept of stochastic tangent minorants and majorants of the integrand function as a source of global information on the objective function. A calculus of stochastic tangent minorants is developed.
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولGlobal Optimization Ensemble Model for Classification Methods
Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Global Optimization
سال: 1994
ISSN: 0925-5001,1573-2916
DOI: 10.1007/bf01096533